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A MOVING FINITE ELEMENT METHOD FOR TIME DEPENDENT PARTIAL
DIFFERENTIAL EQUATIONS WITH ERROR ESTIMATION AND REFINEMENT*

Slimane Adjerid** and Joseph E. Flaherty*#*

Dedicated in memory of Richard C. DiPrima

We discuss a moving finite element method for solving vector systems of

Abstract

time dependent partial differential equations in one space dimension. The mesh
is moved so as to equidistribute the spatial component of the discretization
error in H'. We present a method of estimating this error by using
p-hierarchic finite elements. The error estimate is also used in an adaptive
mesh refinement procedure to give an algorithm that combines mesh movement and
refinement.

-

We discretize the partial differential equations in space using a
Galerkin procedure with piecewise linear elements to approximate the solution
and quadratic elements to estimate the error. A system of ordinary
differential equations for mesh velocities are used to control element
motions. We use existing software for stiff ordinary differential equations
for the temporal integration of the solution, the error estimate, and the mesh

motion. Computational results using a code based on our method are presented

for several examples.
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1. Introduction Chief, Techunical Information Division /

Many technological situations involve the rapid formation, evolution,
propagation, and disintegration of small scale structures. Some examples are
shock waves, shear layers in laminar and turbulent flows, phase boundaries
during nonequilibrium thermal processes, and classical boundary layers. With
increasing complexity of the physical problem, there is an increasing need for
reliable and robust software tools to accurately and efficiently describe the
phenomena. Adaptive techniques automatically change and evolve with the
solution and are thus good candidates for providing the computational methods
and codes necessary to solve some of these difficult problems.

Two types of adaptive techniques are currently popular: (i) moving mesh
methods, where a grid of a fixed number of finite difference cells or finite
elements is moved so as to follow and resolve local nonuniformities in the
solution, and (ii) local refinement methods, where uniform fine grids are
added to coarser grids in regions where the solution is not adequately
resolved. A representative sample of both types of methods is contained in
Babuska, Chandra, and Flaherty [1}. Roughly speaking, moving mesh methods are
superior at reducing dispersive errors in the vicinity of wave fronts while
local refinement methods can, in principle, add enocugh fine grids to resolve
any fine scale structure (cf. Hedstrom and Rodrigue [%]).

We discuss a moving mesh finite element procedure for finding numerical
solutions of m-dimensional vector systems of partial differential equations

having the form
(1.1) Lu := M(x,t)ups + £{x,t,u,uy) - [D(x,t,uluyly =0,
0O<x«<1, t>0,

subject to the initial and boundary conditions

- - - - - - - ' -
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(1.2) u(x,0) =u¥(x) , O0<x<1l,
o
(1.2b,c) either uj(x,t) = ay(t) or | Dijujy (x,t) = aj(t)
g1

atx-Oandl,t>0,1=l,2, seey M.

We are primarily concerned with parabolic problems where D and M are positive
definite; however, we do not restrict ourselves to this case, but instead we
assume that conditions are specified so that equations (1.1,2) have an
isolated solution.

We discretize (1.1,2) in space using a firite element-Galerkin
procedure with piecewise linear approximations on a moving mesh. We simulta-
neously calculate an error estimation using a pilecewise quadratic correction.
This error estimate is used to move the mesh so that it approximately
equidistributes the local spatial component of the discretization error.
Temporal integration is performed using a code for stiff ordinary differential
equations and algebraic systems due to Petzold [15]. We halt the temporal
integration at specified times and examine our error estimate. If it is
larger than a prescribed tolerance, the step is rejected and the integration
is re-dove using a finer spatial discretization. On the other hand, if the
error estimate indicates that the solution is beizg calculated too
accuarately, then the integration is continued with a coarser sbatial mesh.

Our procedure differs from the moving finite element method of Miller et
al. (8,12,13] in that we move the mesh so that the spatial error in HIl is
equidistributed and they move their mesh so as to mivcimize the residual in
L. Our refinement procedure also differs from local refinement procedures
of, e.g., Berger [2], Bieterman and Babuska [3,4], and Flaherty and Moore
[6]. Our mesh equidistributes the local error and, thus, when refinement is

necessary it is performed globally. This avoids the use of complicated tree
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data structures that are necessary with the local refinement schemes of, e.g.,
. Berger [2] and Flaherty and Moore ([6,7].
In Section 2 of this paper we discuss our discretization procedure, in

Section 3 we describe our algorithm and mesh refinement techniques, in Section

. 4 we apply a code based on our algorithm to several 1linear and nonlinear
examples, and in Section 5 we discuss our results and suggest some future

considerations and refinements.

2. Discrete Formulation

We construct a weak form of (1.1,2) in the usual manner. Thus, we assume
u € Hé, where the subscript E denotes that u satisfies any essential
{(Dirichlet) boundary conditions in (1.2). We select a test function v € Hé,
where the subscript O indicates that v satisfies homogeneous versions of any
essential boundary conditions. We multiply (l.1) by v, integrate it on

0 <x <1, and then integrate the diffusive terms by parts to obtain

| Acenssion For

(2.1a) (vyup) + (v,f) + a(vyu) =0, for allv Cué » £>0, ;\TTD EEA&I
D0 TS
S Liiriaunced
here Juat.fication
1 : ’ IR ____;f~
(2.1b) (v,u) = IO vix,t)Tu(x,t)dx , S Jrrrieation/ :

“Llability Codes

.:\'vl"“.‘l ﬁ.\"./or

1 1 Apecial
(2.1¢) a(v,u) = IO v: D(x,t,u)uydx - vTD(x,t,u)ux | . ‘ Lln

N

To construct finite element solutions of (2.1) we select finite

dimensional approximations U € Sg and V ng to u and v, respectively.

Here, Sg and Sg are finite dimensional subspaces of H:: and H(l) , RN

respectively. Thus, we seek to find U € Sg satisfying

1
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(2.2a) (V,Ug) + (V,£) + a(V,U) = 0, for all V ng », >0,
(2.2b)  (V,U) = (v,u0) , £ =0,

We introduce a partition
(2.3) n(t,N) := {0 = xg(t) < xj(t) < ... < xy(t) = 1}

of (0,1) into N subintervals (xj-3(t),xy(t)), 1 =1, 2, «c., N, t >0 and
select U and V to be plecewise linear polynomials with respect to this

partition. Thus, for example, U has the form

N
(2.4a)  U(x,t) = ] Uj(e)gs(x,M(t,N)) ,
1=0

where
r X - xi_l(t)

x3(t) - x3-3(t)

»ox, () ¢<x <x (2)

- Xi+1(t) -
(2.4b) ¢i(x,n(:,N)) 1 x1+l(t§tl xi’(‘t) » ox(e) <x <x . ()
L 0 , otherwise
We pote that the derivative U, in (2.2a) has the form
. u = ) (U ()¢, (x,M(c,N)) + u () = x.(t)},
t =0 i i jmi-1 i dxj 3

where (') := d( )/dt. Thus, if the mesh positions and velocities, x{(t) and

ii(t) were kzown, we would have a set of ordinary differential equatiouns for

the nodal values Uj(t) of U(x,t).
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In order to estimate the error in the piecewise linear finite element

equations (2.2) to (2.5) we vfite
(2.6) u(x,t) = U(x,t) + e(x,t)
and substitue this into (2.la) to obtain

(2.7) (v,Ue+ ep) + (v,£(.,t,U+e, U, + ex)) + a(v,U4e) = 0,
foralvaH(IJ s, t>0.

We select a finite dimensional approximation E € §g of e consisting of

piecewise hierarchic quadratic functions, i.e.,

. N
(2.8a) E(x,t) = ) Ej(t)¥(x,M(t,N)) ,
i=]1
where
| C 4f{x - x3-1(e) ] [xg(t) - x] ,
{x1(t) - x4-1(t)]%
(2.8b)  ¥(x,0(t,N)) =- xi-1(t) < x < x3(t) .

o, otherwise

L

We also select a finite dimensional approximation V €:§g of v consisting of

plecewise quadratics. Thus, we solve

(2.9a) (V,Up + E¢) + (V,£(.,t,U+E, Uy + Ex)) + a(V,U4E) = 0 ,
foranvcé'g , t >0,

subject to the initial conditions

(2.9b) (V,E) = (V,u0-U) , for all V cs“g ,t=0.
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Once agaic, if the mesh positions and velocities were known, we would have

a set of ordinary differential equations for Ej(t). Note that our error
estimate E(x,t) assumes the superconvergence of the piecewise lircear finite
element solution U(x,t), i.e., we assume that the piecewise linear solution
is converging to higher order at the nodal points x3(t), £ = 0, 1, ..., N.

The error estimate that is calculated by solving (2.9) is used to
coantrol the motion of the mesh. Specifically, we determine the mesh positions

by solving the ordicary differential system

(2.10a) ii(t) - ii-l(t) = fk(ll giyilll -E),i1=1, 2, «.. N,
where A is a positive constant and

(2.10b) NEZ = || E ||f 1= f;[(*r:)2+ (Ex)zldx .

Thus, ||Ej¥;]||] is the local error ic Hl om (x3-j(t), x4(t)) and E is
the average error in Hl. If ||E;j¥ ||} is larger than E then the right hand
hand side of (2.10a) is negative and the points x3(t) and xy-j(t) are
moved closer together. Similarly, when |[E;¥s||) is smaller than E the points
x3(t) and x;-1(t) are moved apart. The differential system (2.10) was
studied by Coyle et al. {5] and shown to asymptotically equidistribute the
quantity ||Ej¥;||; and to be stable relative to small perturbations in the
mesh positiorns. Large values of the parameter A give shorter relaxation
times of x4(t), 1 =0, 1, ..., N, to an equidistributing mesh; however,
they ictroduce stiffness into the system (2.10). This strategy is similar to
one suggested by Hyman and Naughton {10] and we, like they, solve it by

eliminacinglf using (2.10) on two neighboring intervals. This gives

o
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(2.11) X341 = 24 + xg-1 = =M} [Egm ]y - |EsullD)
151,2, oo-,N"l,t)O.

We select an initial mesh for (2.11) that is either uniform or that
equidistributes E(x,0). An algorithm for calculating an equidistributing mesh
is described in, e.g., Coyle et al. [5].
) At preseat, we solve the three sets of ordinary differential equations
(2.2), (2.9), and (2.11), respectively, for the plecewise linear
approximatiorn, the quadratic error estimate, and the mesh positions
simulataneously using the backward difference code DDASSL developed by Petzold
[15]. This code is capable of solving systems of implicit differential and

algebraic equations having the general form

-4

(2.12)  g(t, y(t), y()) =0 , € >0,
and subject to appropriate initial conditions. It can solve stiff systems,
' with variable order of accuracy and temporal step size, and caun even solve
problems when the matrix M in (l.1) is singular. Our differential system is
simpler thac (2.12) and has the general form
) (2.13) A(t,y)y + h(t,y) =0 , t >0 .
Furthermore, the matrix A and the Jacobian of h are sparse and banded and
DDASSL is capable of exploiting this structure. At present, we use finite
difference formulae to approximate Jacobians of g with respect to y and ;.
" 3. Mesh Reficement Algorithm

A top level algorithm for solving the system (2.2), (2.9), and (2.1l1) is

presented iz Figure 1 in a pseudo-PASCAL language. The input parameters are a

---------------




j

. B AR

set of output times toutputfk], k = 0, 1, ..., K, a spatial error tolerance

tol, and a value for A.

PROCEDURE mferef (toutput, K, tol, A);
BEGIN

select ipitial mesh;

k = 13

WHILE k < K DO

BEGIN
solve the problem on toutput[k-1] to touput[k] using

the moving finite element procedure described in
Section 2;

compute E;
IF E > tol
THEN add a mesh point to each subinterval
ELSE
BEGIN
IF E < tol/10 THEN delete a mesh point from
each subinterval;
k =k +1
END

END
END;

Figure 1. Top level Algorithm for the movirng finite element
procedure with mesh refinement.

We halt the temporal integration at every output point and examine the
average error E. If E is larger than tol, we add a firite element uniformly
to each subicterval and re-do the integration. If E < tol/10 we delete every
other element and coatipue the iztegration. In thé case when tol/10 < E < tol
we continue the integration with the same number of elements,

Initial conditions are reeded whenever elements have been added or
deleted. Wher reficement is necessary, we calculate a refined solution U.(x,t)

by interpolaticg U + E at time t using (2.4a) and (2.8a), {.e.,
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(3.1a) U(x,t) = ) Us(e) ¢ (x,M(e,N)) + § Ez(t) ¥(x,I(t,N)) . =
1=0 i=1

If one nodal point is added to each subinterval, then we need values of :3;:

ur(xi ,t), i= 0’ 1’ sy N and Ur((xi + xi+1)/2,t)' i= 0, 1, ecey N_lc
We also need a refined error estimate E.(x,t) and we calculate this as
N N ; hj

(3.1b)  Eg(x,t) = §

E;(t) ¥3(x,M(t,N)) = [ Ej(e)¢pq-1(x,N(t,2N)) . ]
i=1 i=1

Again, if oune nodal point is added to each subinterval, ther we need values of
Er((xi+xi+1)/4,t) and Er(3(xi+xi+l)/4,t), 1i=1, 2, «eey N.
When mesh points are deleted, we need values of E on the coarser mesh.

If every other mesh poict is deleted then we use

(3.2) E(x24-1,t) = U(x24-1,t) - [U(x24,t) + U(x2y-2,t)]}/2,

i = 1, 2, ey N-1.

Initial values for U;(0) and E;(0) were obtained by interpolating the

exact icitial fucction u0(x). The initial mesh N(0, N) can be selected so as

to equidistribute E(x,0). Finally, we select a constant value of A in a :
relatively ad hoc manner; however, we are studying ways of automatically :_‘
choosircg this parameter. E;
Procedures for evaluating £(x,t,u,uy), M(x,t), D(x,t,u), and the iritial '%}
and bourdary conditions must also be provided. A temporal error tolerance and _f%
other parameters that are required by the code DDASSL are.set internally io a :Ei
relatively problem independent manner. tgf
4. Examples ;:

We used a code that is based on the algorithm of Section 3 to solve the :f%
.
1

. .
O

following three exaamples that illustrate the performance of the moving finite

R TR R T U T P T S S S A S G R A AR I R N T R P L RN TR P SEPC S S A N Te e e T
LRI RO AT R AL AR AT AN P O -\.'\,-\ IS I T N TR ST




..........

,_-"-'- ~ A e ™ “ . - R et et e L et “ e e T e are——
T ST W e A S I L T T L e e T T e T T e s S T L S e .

10

element method and the utility of the error estimation strategy. In order to

>
T

estimate convergence rates, we solved some of the examples without refinement

and on stationary meshes.

Example 1. We consider the simple linear heat conduction problem

(4.1) U +uy - Uy = f(x,t) ,t>0 0<x<1.0,

and select the source term f(x,t), the initial function uo(x), and Dirichlet gl;j
boundary conditiouns so that the exact solution of (4.1) is ;}rq
(4.2) u(x,t) = {1 -tanh[Cl(x-Czt;C3)]}/2 . }

The solution (4.2) is a travelirg wave and its steepﬁess, speed, and
phase can be determined by selecting Cj, Cz, and C3, respectively.

We solved this problem on stationary and moving meshes with a fixed
ovumber of elemects. In each case we chose C) = 10, C; = 1, C3 = ~0.15, and,
for the moving mesh, A = 10. Our results for the exact error ||e(.,t)]|}, and

the effectivity index
(4.3) 8 = ||EC.,t) |11 /lleC.,0d] ]y

at t = 0,5 are presented as functions of the number of elements N in Table 1,
The mesh trajectories for N = 20 are showz for 0 < t < 1,4 in Figure 2. An
examivation of Table 1 shows that ||e]]; = O(1/N) for both fixed and moving
meshes, which is as expected [16]. The error of the moving mesh solution is
about half of the error of the fixed mesh solution when N < 40, Furthermore,

the effectivity index 6 + 1 as N increases acd this indicates that the

error estimate E couverges to the true error in H! . The mesh is concentrated

in the vicinity of the wave front and follows the wave with approximately the

correct speed. .
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We next solve this problem on a moving mesh with refinement. We select
an error tolerance of 0.1, A = 30, and show the solution U(x,t) and the mesh
trajectories in Figures 3 and 4, respectively. Elements are added as the pulse
enters the region 0 < x < 1 for small t ard then they are deleted as the
pulse leaves the region when t is about 1.25.

Example 2. We consider the following problem for Burgers' equation:
uy +tugy - Euxx =0, t>0, 0 <x <1,
(4.4)
u(x,0) = u0(x) , u(0,t) = a(t) , u(l,t) = b(t) .
As a first example, we select u0, a, and b so that the exact solution of (4.4)

is the travleling wave
(4.5)  u(x,t) =1 - 2 /e taoh[(x-t)//e] .

As ir Example 1, we solved this problem on stationary and moving meshes
with a fixed number of elements. We chose € = 0.0l and, for the moving mesh,
A = 10, Our results for the exact error Ile(.,t)lll » and the effectivity
index at t = 0.5 are presented as functiocs of the number of elemerts N in
Table 2. We see that ||e|]|; = O(1/N) for both fixed acd moving meshes and
that the error estimate couverges to the true error. Here, as in Example 1, we
see that the effectivity index iIs converging at a faster rate for the uniform
mesh thar for the moving mesh.

As a secord example for (4.4), we select
(4.6) u% (x) = 10x(x ~ 1)(x - 3/4) , a(r) = b(t) =0 .

For small times and €, the exact solution is a pulse that moves iz the

positive x direction while steepening. At about t = 1, a shock layer forms

near x = 1 and after a time of 0(l/¢), the solution dissipates to zero.
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STATIONARY MESH MOVING MESH Sk
N |lelis 0 |lells 0 )
10 0.4275 0.9634 0.2810 0.9232
20 0.2330 0.9941 0.1604 0.9874 .
40 0.1175 0.9985 0.0892 0.9978 s
TABLE 1. Exact error ||e||, and effectively index 6 for Example 1. -
Calculations well performed on stationary and moving meshes having T
N elements.
STATIONARY MESH MOVING MESH
N |lells 0 {lelf1 0 —
10 0.2036 0.8027 0.1499 0.7321 -
20 0.09372 0.9724 0.0847 0.9144 -
40 0.04707 0.9950 0.0434 0.9854
TABLE 2. Exact error ||e||, and effectively index 6 for Example 2 ol
with the exact solution given by eq. (4.5). Calculations were o
performed ou stationary and movicg meshes with N elemeats. -
-l
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We present the solution U(x,t) and the mesh trajectories for
computations performed with 20 moving elements, € = 0.01, and A = 10 io

Figures 5 and 6, respectively. The mesh is concentrated in regions of high

curvature aad follows the moving wave frout.
Example 3. We consider the reaction-diffusion model in one dimension
(cf. Kapila [11]}) N
Up = uyyx -~ Due~$/T |
(4.7a,b) t>0,0<x<1. T

LT, = Tyx + obu e~ 8/T

el . —tia
(4.7¢) D=R7G; .-
(4.7d,e) u(x,0) =~ T(x,0) = 1,
(4.7f,8) u, (0,t) = T,(0,t) =0 ,

(4.7h,1) u(l,t) = T(1,t) = 1 .

This model discribes a single one step reaction (A + B) of a gas in a

region 0 < x < 1, The quantity u is the wmass fraction of the reacting gas, T
is the gas temperature, L is the Lewis rumber, a is the heat release,

§ 18 the activation energy, D 1is thé Damkohler number, and R > 0.88 is the

reaction rate.

We first consider the case wher L = 1. Then T+ au = 1 + «a and

(4.7) reduces to the simpler problem

(4.8b,c) T,(0,£) =0, T(1,t) =1 ,¢t>0, X
N
n_:\‘
((0.86) T(x,O) =] » 0<x<1l. t::.:::

............
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For small times the temperature gradually increases from unity with a "hot
spot”™ forming at x = 0, At a finite time, ignition occurs and the temperature
at x = 0 jumps rapidly from near unity to 1 + a. A sharp flame front then
forms and propagates towards x = 1 with speed proportional to e®8/2(1+a). In
real problems, a is about unity and 6 is large; thus, the flame front moves
expounentially fast after ignition. The problem reaches a steady state once the
flame propagates to x = 1,

We solve (4.7¢,8) for =1, § = 20, and R = 5 using a moving
mesh with 20 elemerts. Our results for the mesh trajectories when A = 10 and
200 are shown in Figures 7 and 8, respectively. The computed temperatures T
vs. x are shown in Figure 9 for several times and A = 10 and 200. We also
computed solutions on a moving mesh with refinement using tol = 0,1 and
A = 300, The mesh trajectories and solution in this case are shown in Figures
10 acd 11, respectively.

We see that the ignition time and the computed solutions while the flame
frout is propagating from x = 0 to x = 1 are sensitive to the choice of ) (cf.
Figures 9 and 11). This is due to the extremely fast rate of ignition and
velocity of the froot. All three solutions are in essential agreement before
ignition and upon approaching steady state. This is a very difficult problem
and yet our methods are capable of finding a solution with relative ease. This
is because the mesh is moving with approximately the speed of the front and
the solution alocg the mesh trajectories is charnging slowly.

As a final problem, we solve the coupled system (4.7) with L = 0,9, As
in the previous example, we take a= 1, § = 20, R = 5 and solve the problem on

a moving mesh with 20 elements. Our results for the mesh trajectories when

A = 10 and 150 are shown in Figures 12 and 13, respectively. The computed

-t b




temperature ard mass fraction are shown in Figure 14 for A = 10 and in Figure 15
for A = 150, Again we computed a solution with refiremernt using tol = 0.1 and A
= 500. The mesh trajectories and solution are shown in Figures 16 aund 17,

respectively. Once again, the ignition time and computed solutiouns have

different phases while the flame frount is moving. We show the estimated error
[[E|]; as a fucction of time for solutions calculated with A = 10, N = 20, A =

150, N = 20, ard A = 500 with refinement in Figure 18. For N = 20, the estimated

R .
2 g yrewrey PP SOT R PO

error is about 50 percent smaller when A = 150 than for A = 10. The estimated "

error is less than the prescribed tolerance of 0.1 when refinement is used.

i

5. Discussior of Results
-
We have presented a moving finite element method where the mesh is moved T:f¥;
so as to equidistribute the spatial component of the discretization error in i¥éi
Hl. We also discuss a computationally simple and effective procedure for i:i;

estimating the discretization error using quadratic hierarchic finite
elements. The error estimate gives users some corfidernce in the computed
solution and we also use it to develop a simple procedure for combining mesh
movement acd refinement. Our approach makes use of existing software for

solving ordirary differential equations. We have used the differential

algebraic system solver DDASSL [15]; however, there are several other
possibilities. We have applied a code based on our method to several examples

and have showr that it can effectively solve some very difficult partial

N .
el .

A I Y T
ate'atetalte s 4

differential systems with little or no user interventioc.
While our results are very encouragizg, there are several aspects of our

work that are still incomplete. For some problems (e.g., ‘Example 3) the




computed solutions seem to be sensitive to the choice of the parameter A used
in the equidistribution scheme. So far, the choice of this parameter is left

2 to the user, and while it is our only problem dependent parameter, we hope to
. be able to determine it adaptively in the future. Furthermore, our refinement
i. procedure is not optimal and needs further study. However, even though our

strategy was simple it was still effective in that computer times were often

rf much less for greater accuracy with refipement than for solutions computed
. with a fixed oumber of elements.

We intend to extend our method in several directions, such as including
higher order finite element approximations and to higher spatial dimensional
problems. Two-and three—dimensional problems are quite difficult; however, we

note that some success was reported by Miller [14] with a different, but

related, moving finite element method.
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Figqure 2. Mesh trajectories for Example 1 with A=10 and N=20.
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Figure 3. Solution U(x,t) vs. x at t = 0.0, 0.1, 0.3, 0.6, ' and 1.26
for Example 1 using refinement with tol = 0.1 and A = 30.
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Figure 4. Mesh Trajectories for Example 1 using Refinement
: with tol = 0.1 and A = 30.

Figure 5. Solution U(x,t) vs. x for t = 0.0, 0.3, 0.6, 1.0 and 1.4
for Example 2. 1Initial and boundary conditions are chosen
to Satisfy Eq' (406), A= IO, N = 20 and € = 0.01.
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Figure 6. Mesh trajectories for Example 2. Initial and boundary cornditiouns
are chosen to satisfy Eq. (4.6), A = 10, N = 20 and € = 0.01.
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: Figure 7. Mesh trajectories for Example 3, Eq. (4.8), with A = 10 acd N = 20
:
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Figure 8. Mesh trajectories for Example 3, Eq. (4.8), with A = 200 and N = 20.
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Figure 9. Temperature T(x,t) vs. x at t = 0.0, 0.26, 0.27, 0.28 and t = 0.29
for Example 3, Eq. (4.8), with N = 20, A = 10 (octagons), acd A = 200
(diamonds).
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Figure 10. Mesh trajectories for Example 3, Eq. (4.8), using Refinement
with tol = 0.1 acd A = 300.
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Figure 1l. Temperature T(x,t) vs. x at t = 0.0, 0.24, 0.25, 0.256, 0.258,
0.26, 0.27, 0.28, acd 0.6 for Example 3, Eq. (4.8), using
Reficemert with tol = 0.1 and A = 300.
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Figure 12. Mesh trajectories for Example 3, Eq. (4.7), with
L =0.9, A =10 and N = 20,
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Figure 13, Mesh trajectories for Example 3, Eq. (4.7), with
L =0.9, A= 150 and N = 20,
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Figure 14, Temperature (triangles) and mass fractioan (octagons) vs. x at S
t = 0.0, 0.227, 0.229, 0.237, 0.245, and 0.260 for Example 3, —ae
Eq. (4.7), with L = 0.9, A = 10 and N = 20. -——
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Figure 15, Temperature (triangles) ancd mass fraction (octagons) vs. x at . :
t = 0.0, 0.227, 0,229, 0,237, 0.245, and 0,260 for Example 3, -
Eq. (4.7), with L = 0.9, A = 150 and N = 20.
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Figure 16. Mesh trajectories for Example 3, Eq. (4.7), using
refinement with L = 0,9, A = 500 and tol = 0.1.
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;: Figure 17. Temperature (triangles) acd mass fraction (octagons) vs. x at
- t = 0.0, 0.227, 0.229, 0.237, 0.245, and 0.260 Eq. (4.7),

-~
" usiog refinement with L = 0.9, A = 500 and tol = 0.1,
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Figure 18. Estimated error ||E||; vs. time for Example 3, eq. (4.7), with
with L'= 0,9, A= 10, N =20 (1), A = 150, N = 20 (2), A = 500
with reficement using tol = 0.1 (3).
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